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A class of multispin correlation functions of an Ising model with ferromagnetic 
nearest neighbor interactions K and constant (distance-independent) long-range 
interactions Qt= Q, /= 1, 2 ..... on the Sierpifiski-gasket lattice is considered. 
Using an exact method for calculating thermodynamic functions of hierarchi- 
cally constructed Ising systems, it is shown that, for a set of values of Q and for 
almost all values of K, some Mk-spin correlation functions, where Mk = 3k+ 3 
with k = 1, 2 ..... n and n = 1, 2 .... being the order of lattice construction, change 
chaotically as n, k, and thereby Mk increase to infinity. Accordingly, in the 
thermodynamic limit, these correlation functions prove to be nonanalytic for 
appropriate values of Q and K. Since Mk-point correlation functions with k 
being finite, i.e., correlation functions involving finite numbers of spins, remain 
analytic as n tends to infinity, there is a smooth crossover between analytic 
properties of correlation functions of the two types. 

KEY WORDS: Ising model with long-range interactions; Sierpifiski-gasket 
lattice; correlation functions; chaos. 

1. I N T R O D U C T I O N  

Using  recurs ive  m e t h o d s  to s tudy stat is t ical  systems, one  can  reduce  the 
analysis  of  their  t h e r m o d y n a m i c  proper t ies  to inves t iga t ing  features of  

a p p r o p r i a t e  discrete  maps .  Pe rhaps  the be s t -known  example  o f  such a 

r educ t ion  is t h e ' a p p l i c a t i o n  o f  the r e n o r m a l i z a t i o n - g r o u p  ( R G )  a p p r o a c h  
to a g iven m o d e l  and  the gene ra t i on  o f  the R G  flow in the space o f  

coupl ings .  Usua l ly ,  the m a p s  charac te r i z ing  p roper t i es  o f  s tat is t ical  systems 

d isplay  a s imple  a sympto t i c  behav io r ,  i.e., they  possess stable a n d / o r  
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unstable fixed points. (~) There are, however, real systems described by 
maps which exhibit more complex asymptotic behaviors, such as stable and 
unstable limit cycles of different orders, or even chaotic behavior. Indeed, 
complex properties of one-dimensional and multidimensional RG trajec- 
tories have been found in cases of hierarchical spin systems (2-5) and a two- 
dimensional Lie-group-valued spin model, 16"7) respectively. It turns out 
that various nontrivial behaviors of maps characterizing statistical systems 
result in specific properties of thermodynamic functions of these systems. 
For instance, the chaotic RG flow of a given statistical model is associated 
with a nonanalycity of the free energy over a range of temperatures, t4) In 
the case of hierarchical Ising models, the occurrence of chaotic RG flows 
has been interpreted as a consequence of the existence of a spin-glass 
phasC2. 5) or incommensurate structures) 3) 

In this paper, a class of multipoint correlation functions of an Ising 
model with positive nearest neighbor couplings K and negative long-range 
interactions Qt, I=  1, 2 ..... on the Sierpifiski-gasket (SG) lattice is consi- 
dered. The long-range interactions are introduced in a self-similar manner, 
reflecting the hierarchical structure of the lattice, tS) and are assumed to 
be all equal to a constant Q (independent of the distance on which they 
act). It should be noted that, although multipoint correlation functions of 
translationally invariant systems have been studied for many years, both in 
the critical region and away from this region, 11~ the multipoint correla- 
tion functions of fractal lattice models have not been analyzed as yet. Since 
fractal lattices are inhomogeneous at all scales, correlation functions of spin 
models defined on such lattices depend, in general, not exactly on distances 
between given spins, but on their positions as well. t8. 14) Consequently, in 
order to study some global (orientationally independent) properties of spin 
correlations of fractal lattice systems in the critical region, one ought to 
resort to effective correlation functions, averaged geometrically over 
positions of all spins involved by these functions/8) On the other hand, 
certain global features of spin correlations of fractal lattice systems can be 
investigated by considering multipoint correlation functions, which involve 
spins distributed in the same way among some vertices of each of identical 
lattice fragments being parts of the self-similar structure of a given lattice. 
The analysis of properties of such multipoint correlation functions yields an 
insight into the nature of the competition between short-range and long- 
range interactions. 

The correlation functions studied here are formed from spins located 
at corners of the largest upward-pointing triangle (created at the zeroth 
level of the lattice construction) and at corners of all downward-oriented 
triangles, created at the kth, intermediate, stage of construction of the 
gasket, with k = 1, 2 ..... n, n/> 1, where n denotes the order of the construction 
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of the ultimate SG lattice. At the nth level of construction of the system 
(for the method of hierarchical creation of SG-like lattices, see ref. 15), the 
number of such spins is equal to Mk = 3k+ 3, while the total number of 
lattice points amounts to Nn = (3 "§ + 3)/2, n 1> 0. Below, it is shown that, 
for some nonzero finite temperatures and for some values of Q belonging 
to a finite interval, the multipoint correlation functions under consideration 
here do not tend to a limit as n and k (k ~< n) increase to infinity. In par- 
ticular, for some isolated points from this interval and for almost all values 
of K, the multispin correlation functions exhibit chaotic behavior as n and 
k grow. 

2. THE L O N G - R A N G E  I N T E R A C T I N G  FRACTAL M O D E L  

The SG-lattice spin model with long-range interactions Qt>~0, 1= 
1, 2 ..... distributed in a self-similar way along edges of all upward-pointing 
triangles of all scales, excepting the smallest upward-oriented triangles (see 
Fig. 1 ), has turned out to be very useful for studying critical phenomena in 
fractal systems. ~s' ~6) Due to the occurrence of the long-range couplings, the 
system is infinitely ramified and reveals phase transitions at nonzero finite 
temperatures, both for constant Qb i.e., for distance-independent long- 
range interactions, (s) and for Q/decaying algebraically with the distance. ~9) 
It is remarkable that, in the case of constant long-range interactions, the 
model is exactly tractable. (s'9) Thus, in this case, the system provides a 
useful testing model for studying in an exact way various general ques- 
tions concerning phase transitions in fractal spin systems at nonzero 

Qco 

Q3 
Q2 
QI 

Fig. 1. The SG lattice�9 Long-range interactions Q/are also represented. 
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temperatures. In particular, investigations of  thermodynamic properties of  
this system have shown that a classification of  fractal spin systems accord- 
ing to universality is possible, and have shown how to construct 
appropriate universality classesJ ~6~ 

Here, a system of Ising spins a = _ + l  on the SG lattice with 
ferromagnetic nearest neighbor interactions K and with antiferromagnetic 
constant long-range interactions Q~ = Q < 0, l = 1, 2 ..... is considered. The 
Hamiltonian of  the system generated at the nth, n ~> I, level of  construction 
of  the gasket can be taken in the form 

3 

Jg(a)/ksT= ~v  ~ K=(R,,_,+ep) a(R._,+p=.p)cr(R,,_,+p~,+,.ij) 
R . - i  =,p= l 

3 

+ ~ Q, y . v  E ~  (2.1) 
/=1  Rn-I ~(:1 

with K~ - K, ~ = I, 2, 3, being the nearest neighbor couplings. Such a nota- 
tion is introduced to record the spatial orientation of  the couplings K along 
edges of  each of  the smallest upward-pointing triangle (see Fig. 2a), and 
has no intrinsic significance. The long-range interactions Q~= Q<~O are 
assumed to act at the distances 2 t, 1 = 1, 2 .... (measured in units of  the lat- 
tice constant). The symbol Z v means that the vectors R,, - ( X, Y),,, 
m = 0 ,  1 ..... run through the centers of  all downward-oriented triangles 

K2 

(a) (b) 

Fig. 2. (a) Spatial orientation of the interactions K,, ~= I, 2, 3, in the basic (smallest) 
upward-pointing triangle of the SG lattice. Orientation of the vectors e=, a = 1, 2, 3, intro- 
duced in the text, is also shown. (b) The SG lattice at the first construction level. The manner 
of labeling lattice points is illustrated, 
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generated at the mth stage of construction of the SG lattice. The basic 
vectors e~, e = 1, 2, 3, and e 4 are defined by (see Fig. 2a) 

l el = (0, .~V/3) (2.2) 

e2 = (�89 - ~ j / ~ )  (2.3) 

e, = ( 2,' ~x/-~) (2.4) 

e4~el (2.5) 

while the vectors p~,p and P4, p, e, fl = 1, 2, 3, are determined by 

p~,a=e~+ea (2.6) 

P4.# - Pl,B (2.7) 

Thus, the vectors R ,_  1 +ea ,  f l=  1, 2, 3, indicate the locations of the 
centers of the three smallest upward-pointing triangles generated at the nth 
stage of the lattice construction and contained in a larger upward-pointing 
triangle (of linear size 2) created at the ( n -  1 )th lattice construction level 
and centered at R,,_l. Accordingly, the vectors R, ,_l+p~.# and 
R,,_ l +  P~+ l.a, 0t, f l=  1, 2, 3, indicate positions of vertices of these three 
smallest triangles. (Note that, for convenience, the lattice constant is 
assumed here to be equal to one at each construction level of the lattice.) 
Consequently, the vectors R,,_ l +2/e~ and R,,_l+21e~+~, ~--- 1, 2, 3, 
indicate positions of vertices of a downward-pointing triangle of linear size 
2 ~, generated at the (n-1)th lattice construction stage and centered at R,,_/ 
(see Fig. 2b). 

3. G E N E R A T I N G  E Q U A T I O N S  FOR M U L T I P O I N T  
C O R R E L A T I O N  F U N C T I O N S  

Consider, for the model defined in Eqs. (2.1)-(2.7), a class of Mk-point 
( M k = 3 ~ + 3 )  correlation functions F,,.k({K,},Q), k = l , 2  ..... n, n>~l, 
involving spins Iocated at corners of the largest (upward-pointing) triangle 
and at corners of all downward-oriented triangles generated at the kth 
stage of construction of the SG lattice. Thus, the Mk spins involved in these 
correlation functions are assumed to be distributed in the same manner for 
each n and k, among appropriate vertices of each of identical lattice 
fragments being parts of the self-similar structure of the gasket. Such a 
distribution of spins adopted in the definition of F,,. k({Ks}, Q) reflects the 



1104 Jezewski  

hierarchical structure of the SG lattice. In the case of k = n, n/> 1, the 
correlation functions can be determined by 

3 d 
Fn . , ( {K ,~} ,Q)=  I-[ v l--[ d K ~ ( R , , _ 1 + e ~ ) Z , , ( { K ~ } , Q )  (3.1) 

Rn-I  0t~l  

where I-I v denotes that R,,_ 1 runs through centers of all downward-point- 
ing triangles generated at the ( n -  1)th, n/> l, stage of lattice construction, 
and Z ,  is the partition function of the nth, n i> 1, level system. For each 
k~<n, F,,.k can also be determined by multiple differentiation of the 
partition function with respect to some nearest neighbor interactions of 
appropriate orientations and associated with the smallest upward-pointing 
triangles forming the SG lattice. 

The partition function of the system at each level of the gasket 
construction can be determined using an exact recursive method t9. ~5) for 
calculating the constrained partition function Z~ '~-'3 with arbitrary 
configuration (a I , tr 2, tr3) of spins located at corners of the largest triangle 
of the SG lattice (generated at the ith construction stage). Then, one has 

,~1,~2~,3 = Z i (u, v) "~""" Zi+ 1 (u, v) ~'"'"" Z~ (u, v) Zi"  (u, v) ":":" 

x w(1 + vS1_,3) (3.2) 

where the convention of summation over repeated indices (~', a", tr"') is 
applied, $123 = crl ~2 + or1 or3 + cr2tr3, and 

u =  1 / t r -  1 + tx  

v = 1/( 1/t o - 1 + t o) 

w = e ll + 

(3.3) 

(3.4) 

(3.5) 

with t.,.=tanh(x) and c , . -cosh(x) .  Note that the constrained partition 
function depends, in principle, on K (or K~, e =  l, 2, 3) and Q. The 
variables u and v have been introduced for the sake of simplicity. Using 
(3.2), one can calculate the constrained partition function for increasing i, 
beginning with 

o" I o'~  0" 3 Z 0 - (u , / .7)  ~ Z; l~  = A o ( U  0 d t- 8123 ) (3.6) 

where 

Ao = c3tr (1  + tx)  (3.7) 

Uo =U (3.8) 
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Then, at the (i + 1)th iteration, one derives 

with 

O.IO.2O.3 Zi+ l (u,v)=Ai+l(Ui+l + S123) (3.9) 

A;+I =8A~w(1 +ui)[(1--u~+u~)v+ I +2v] (3.10) 

U i +  1 =(1 --U,+U~+3V)/[(1 --Uidc-bl~)l)'-] - 1 +2v]  - g ( v ,  u~) (3.11) 

Hence, the partition function 

is given by 

o.I a2o'3 Z , + , ( u , v ) =  ~ Z,+l (u,v) 
o.I �9 o.2, o.3 

Zi+ l(U, v) : 8Ai+ l ui+ I (3.12) 

Note that the processes of construction of the SG lattice and the calcula- 
tion of the partition function proceed, in some sense, in opposite directions. 
The first process relies on discarding from the SG lattice downward- 
pointing triangles of smaller scale than the scale of the smallest triangles 
forming the lattice at a given construction stage, tls) whereas the second 
process is associated with creating a larger lattice from identical smaller 
fragmentsJ ~ 7) 

It is obvious that the recursive method of hierarchical calculation of 
the partition function can be adopted to determine the correlation func- 
tions F., k" Indeed, these functions can be expressed as 

a I a~a 3 I"n,k(U , I))= [Zn(U , v)] -1 Z Yn -k,k(U, V) ( 3 . 1 3 )  

O.I , G 2 . a 3  

with ~,~_,o.3 Y.-k,k being determined by the iteration relation 

o.l o.~ ~ y._~.i+~(u, v) o.'~"~" )'._k,i(u, v) = Y.'--k,~ (u, V) ~o."~ )'._k,~(U, V) " : : '  

XW(1 + vS123), i=0 ,  1 ..... k - 1  (3.14) 

starting with 

O" I 0"20" 3 Z._k (u, v) Z,,-_ k (u, v) ~3."~' - Z,,_k (u, v) ~'o."o." )',,_~.o(U, v) -  ~'~'~" 
t n m ( 3 ) x a a  a wSlza(1 +vSlz3) (3.15) 
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where S ] ~ = a ~ a 2 t r 3 .  Note that in (3.14) and (3.15) the summation over 
repeated indices a', a", and tr"' is understood. Using (3.14) and 
(3.9)-(3.11), one easily finds that 

0.10-20"3 ) ' , , _ ~ . i ( u , v ) = A , , _ k + i ( u , , _ k + i + S 1 2 s ) ,  i = 1 , 2  ..... k (3.16) 

where A,,_k+~ and u,_k+~ are determined by the recurrence equations 
(3.10) and (3.11), with the initial conditions A,,_k+~=X,,_k+ ~ and 
U n _ k +  1 : $ l n _ k + l ,  where 

-4,,-k + l = 16A3. -k(u ' , , -k  v + 1 + 2v) u'._kw (3.17) 

U . - k  + 1 = (U',,_k + 3V)/(U',,_kV + 1 + 2V) (3.18) 

with 

u',,-k = 1/u, ,_~ (3.19) 

Accordingly, in the special case of k = n, i.e., when the correlation function 
involves spins located at corners of all smallest downward-pointing tri- 
angles created at the nth lattice construction level, one has 

I',,.,,(u, v ) = A , , u , , / Z , , ( u ,  v) (3.20) 

with A,, and u,, generated by (3.10) and (3.11), beginning with 

A I =  16A 3 + l + 2 v  - (3.21) 
U 

4. PROPERTIES OF THE MULTISPIN CORRELATION 
FUNCTIONS 

Before studying properties of the correlation functions F,,, k, let us dis- 
cuss some general thermodynamic properties of the long-range interacting 
spin model on the SG lattice. Clearly, by means of (3.12), (3.10), and 
(3.11 ), the thermodynamic behavior of the system is determined by proper- 
ties of fixed-point solutions u* -- u~(v) to the iterative equation (3.11 ). This 
equation has three such solutions, i.e., 

1 1 
u* = 1 and u* = ~-~v _+ ~-~v (1 - 4 v -  12v2) '/2 
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It can easily be checked that for each Q > 0 belonging to a finite interval 
the solution u* is nontrivial, i.e., it is unstable and is associated with 
K*=K(Q) being a nonzero finite value of K. c9) Accordingly, the spin 
system on the SG lattice with ferromagnetic nearest neighbor and long- 
range interactions exhibits phase transitions at nonzero finite temperatures, 
accompanied by a nonuniversal critical line K * =  K(Q) with continuously 
varying exponentsJ 8" 9~ 

The occurrence of long-range couplings in the system has a smooth- 
ing effect on the structure of the SG lattice. It has been shown that as 
a consequence of such a smoothing, critical properties of the fractal 
model with Q > 0 and short-range interacting models defined on abstract 
translationally invariant lattices interpolated to noninteger dimen- 
sionalities reveal some similarities. ('8) However, the similarities are dis- 
tinct only for values of Q from a rather small interval, and, in general, 
the long-range interacting spin model on the SG lattice displays ther- 
modynamic properties typical for regular fractal systems. This follows 
from the fact that, although the long-range couplings are distributed on 
the SG lattice in a different way than the short-range ones, the distribu- 
tions of interactions of both types reflect the self-similar fractal structure 
of the lattice. Accordingly, the competition between short-range and 
long-range interactions does not lead for any K and Q to breaking trans- 
lational invariance. By contrast, the translational symmetry breaking 
takes place in cases of Ising models on Cayley trees with short-range 
interactions and infinite-range couplings between all pairs of spins. 1~9~ In 
such cases, reducing translational invariance due to the competition 
between interactions of the two types can be interpreted as lowering the 
spatial dimensionality. 

Consider now the case of Q ~< 0. Since, by virtue of (3.4), - 1/3 ~< v ~< 0, 
(3.11) implies that u~< - 3  and ui>~ 1, i=  1, 2 ..... for K~>0 as well as for 
K~<0. [It should be pointed out that, from (3.3), one obtains u~>l for 
K>~0 and u ~ < - 3  for K~<0.] However, as can be easily verified, 
0 ~< u*_ ~< 1. Thus, for Q ~< 0, this fixed-point solution of Eq. (3.11) does not 
correspond to any real K, except for the limit value u* = 1 associated with 
Q = 0, K = oo, and thereby it has no physical meaning. With regard to the 
two remaining fixed-point solutions of (3.11) with Q ~< 0, they admit real K 
(note that, altfiough u * ~ < - 3 ,  it can involve both K~>0 and K~<0). 
Stability properties of a fixed-point solution u* of Eq. (3.11) can be deter- 
mined by evaluating the derivative 

dg(v, u) ..... �9 ( -  1 +2u*)(1 - u ' v )  (4.1) 
2(v, u*) = du - [ 1 - u * + ( u * ) 2 ] v + l + 2 v  

822/82/3-4-32 
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At u* one obtains that 2(v, u * ) =  (1 - v ) / ( l  + 3v)>  1 for Q < 0, whereas at 
u* one derives 2(v,u*)=(l+6v+u*v)/(1-vu*)<l for Q~<0. Thus, 
Eq. (3.11 ) possesses for Q i> 0 two "physical" fixed-point solutions. The first 
one, ud', associated with K =  ~ ,  is a trivial unstable fixed point, and the 
second one, u* ,  corresponding, in general, to finite K > 0  or K < 0 ,  is a 
stable fixed point. Consequently, when Q ~< 0, the system does not reveal 
phase transitions at any finite K > 0  or K < 0 .  

From a simple analysis of the nature of the nonlinear equation (3.11 ), 
it is clear that, when Q ~< 0, we have u~ ~<-3 ,  i>~ 1, for the intial value 
Uo-  u ~< - 3  associated with K ~< 0, as well as for u o - u  >/1, connected with 
K>_-0. Thus, for Q~<0 and K~<0 or K~>0, the successive iterates u;, 
i =  1, 2 ..... can take on any real value outside the interval J~ = [ - 3 ,  1 ]. 
However, in the case of calculations of/ ' , , .  ~, u; takes on, after the (11- k)th 
iteration of Eq. (3.11), a new value u ' , ,_ke [ - 1 / 3 , 1  ] [see Eqs. (3.18) and 
(3.19)]. As can easily be checked, if u ,_k belongs to the interval J2 = [0, 1] 
and if -1/4~<v~<0, then all successive iterates u ,_k+; ,  i = 1 , 2  ..... also 
belong to this interval. Consequently, for - 1 / 4  ~< v ~< 0, the interval J2 is 
mapped by g onto itself. It turns out that, within the interval J2, the 
map g exhibits for -1 /4~<v~<-0 .271  .... i.e., for QEJQ, where Je= 
[ - 0 . 4 0 2  .... -0.318...],  more complex asymptotic properties than the 
existence of fixed points. In particular, the mapping displays infinite 
cascades of period-doubling bifurcations, chaotic behavior, and stability 
windowsJ 2~ The bifurcation diagram for u;, i =  1,2 ..... with u~=0.9 is 
shown in Fig. 3. The Lyapunov exponent, 12~ defined for the map g by 

A(v) -- li~m~ 1 N ~/,~1= In [g'(v, ui)] (4.2) 

where the prime denotes the derivative with respect to ui and ul stands for 
an initial value of ui, is illustrated for 0 < ul < 1 in Fig. 4 as a function of 
v. It is seen that, for some isolated values of v, A(v) is positive. Conse- 
quently, the map g behaves chaotically at these values of v. 12~1 It should be 
noted that g has within the interval J2 a single extremum (at u ;=  1/2). 
Therefore, one can expect that the metric properties of the map g are the 
same as the universal metric properties of typical maps with quadratic 
maximum and with negative Schwarzian derivative, c2~ 221 

For simplicity, the examination of Fn, k is confined below to the case 
of K>~0 [note that, by virtue of Eqs. (3.19) and (3.3) with k=n, 
U'o= 1/u~J2 if and only if K>~0]. The discussion of features of the non- 
linear map g leads to a general conclusion that, contrary to the free energy 
per spin, the correlation functions F,,, k with Q ~< 0 can be nonanalytic func- 
tions of K (or temperature) as the thermodynamic limit is approached. This 
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Fig.  4. The  L y a p u n o v  e x p o n e n t  as a funct ion  of  l~ for the m a p  g with an  initial value u~ ~ J_,. 
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can be shown as follows. The partition function and thereby the free energy 
per spin are determined by (3.11) with the initial value given by (3.8). For 
this initial condition, - 3 ~< u,. and ui >i 1, i = 1, 2 ..... and the partition func- 
tion per spin is an analytic function of u (and v) at each stage of lattice 
construction. Although each of the correlation functions F,,. k is also deter- 
mined by the iteration relation (3.11), it is affected according to (3.19) by 
a modification of the (n-k)th iterate. As a result of such a modification, the 
subsequent iterates U,,_k+j ,  i =  1, 2 ..... k, belong to the interval J2 if U',,_k 
belongs to this interval and if - 1/4 ~< v ~< 0. Thus, the correlation functions 
1", . . . . . . .  with 0 ~ m < n being finite can behave chaotically for each finite m 
as n grows to infinity, and F,  . . . . . . .  are not analytic functions of u (and 
thereby temperature) in the thermodynamic limit. It must be stressed that 
a given correlation function F, . . . . . . .  with finite m behaves chaotically as n 
tends to infinity when Q takes on appropriate values from the interval J o  
and when u,,  > 1. Obviously, the latter condition is not satisfied for all 
K~> 0. In the case o fm = 0, u 0 >/1 for all K>~ 0, and the correlation function 
F, .... exhibits chaotic behavior for appropriate values of Q and for almost 
all values lal~ of K. Clearly, in calculating the correlation functions F,,. k for 
any finite k, the number of iterations of Eq. (3.11) after the modification 
(3.19) is finite, even if n tends to infinity, and F,,. k with finite k are regular 
functions of u for all Q ~< 0. Consequently, there is a smooth crossover 
between regular and chaotic regimes of the behavior of the correlation 
functions F,.. k as k tends to infinity, i.e., when the number of spins which 
these correlation functions involve grows to infinity. 

Note that when the RG map of a system displays chaotic behavior 
over a range of temperature, then the system reveals critical phenomena at 
each temperature from the range, and the free energy of the system is 
nonanalytic over this temperature rangeJ 4~ Since the infinite-range fractal 
spin model considered here does not reveal critical phenomena at nonzero 
temperatures, the RG flow of this model is not chaotic. (Notice that the 
RG equations have the same form 18~ in cases of both ferromagnetic and 
antiferromagnetic long-range interactions.) Accordingly, the free energy of 
the model is an analytic function of temperature for all nonzero tem- 
peratures and for each Q ~< 0. As is well known, in the presence of external 
magnetic field H, the free energy can be expressed in a power series in H, 
with coefficients determined by m-point correlation functions (m = 1, 2,...). 
Obviously, in the case of the model considered here, these coefficients 
involve correlation functions F,,. k, which behave chaotically for some tem- 
peratures and for some negative values of Q, as the thermodynamic limit 
is approached. Thus, one could suppose that the free energy of the system 
with Hq:  0 is a nonanalytic function of temperature (for some values of Q), 
although for H =  0 is an analytic function. However, a given correlation 
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function F,. k contributes to a coefficient in the expansion of the free energy 
with the factor 1/M,,k! .  Consequently, in the thermodynamic limit, the 
chaotic behavior of the functions F,. k does not influence analytic properties 
of the free energy for H 4: 0. 

The influence of negative infinite-range interactions on thermodynamic 
properties of the spin system on the SG lattice is strongly manifested in the 
chaotic behavior of the correlation functions F,,  k. It follows from Fig. 3 
and Eq. (3.4) that the chaotic regime is associated with small values of the 
coupling parameter Q (i.e., with large absolute values of Q), for which the 
system is rather highly frustrated. It is also remarkable that, in the chaotic 
regime, ui~>0, i =  1, 2 .... (see Fig. 3), and, by means of (3.12)-(3.19), the 
correlation functions f',. k are ferromagnetic. Thus, although the existence 
in the system of antiferromagnetic long-range interactions leads to the 
chaotic behavior of the function /',,. k, these interactions are incapable of 
imposing on F,,.k an antiferromagnetic character. 

5. CONCLUDING REMARKS 

A class of multipoint correlation functions of the Ising model with 
constant negative long-range interactions has been considered. The correla- 
tion functions involve spins distributed on the lattice in a self-similar 
manner. These functions can be determined by multiple differentiation of 
the partition function with respect to the nearest neighbor interactions of 
appropriate spatial orientations and connected with upward-pointing tri- 
angles generated at the last lattice construction stage. In the case when the 
number of spins involved in the correlation functions tends to infinity as 
the thermodynamic limit is approached, it has been shown that the correla- 
tion functions behave chaotically for some nonzero finite temperatures 
when the limit of the infinite system is approached, provided that the long- 
range coupling strength takes on appropriate values from a finite interval. 
Such a chaotic behavior of the multipoint correlation functions means that 
in the thermodynamic limit they are nonanalytic functions of temperature. 
The chaotic behavior of the correlation functions F,. k is a result of a com- 
petition of ferromagnetic short-range and antiferromagnetic long-range 
interactions. Due to a special distribution of long-range couplings on the 
SG lattice, the ~ystem is frustrated at all length scales, similarly as in Ising 
models with competing ferromagnetic and antiferromagnetic interactions 
on hierarchical latticesJ 2~ However, in contrast with these hierarchical spin 
models, the system considered in this paper does not exhibit chaotic RG 
trajectories. It is noteworthy that, contrary to the multispin correlation 
functions displaying chaos, the free energy per spin is a regular function of 
the temperature for all negative values of the long-range interaction 
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strength. It should be pointed out that the correlation functions F,  . . . . .  
with any finite m can be expressed in the thermodynamic limit by infinite- 
order derivatives with respect to K=, 0c = 1, 2, 3. 

ACKNOWLEDGMENTS 

This work was supported by the Polish Committee for Scientific 
Research under Grant 224399203. 

REFERENCES 

1. K. G. Wilson and J. Kogut, Phys. Rep. 12:76 (1974). 
2. S. McKay, A. N. Berker, and S. Kirkparick, Phys. Rev. Lett. 48:767 (1982). 
3. N. M. ~vraki6, J. Kert6sz, and W. Selke, J. Phys. A 15:L427 (1982). 
4. B. Derrida, J.-P. Eckmann, and A. Erzan, J. Phys. A 16:893 (1983). 
5. A. N. Berker and S. McKay, J. Stat. Phys. 36:787 (1984). 
6. G. Thorleifsson and P. H. Damgaard, J. Phys. A 23:5863 (1990). 
7. P. H. Damgaard and G. Thorleifsson, Phys. Rev. B 44:2738 (1991). 
8. W. Je~,ewski and P. Tomczak, Physica A 171:209 (1991). 
9. W. Je~,ewski, Physica A 210:73 (1994). 

10. L. P. Kadanoff and H. Ceva, Phys. Rev. B 3:3918 (1971). 
11. B. M. McCoy, C. A. Tracy, and T. T. Wu, Phys. Ret,. Lett. 38:793 (1977). 
12. J. L. Richardson and M. Bander, Phys. Reo. B 17:1464 (1978). 
13. J. H. Barry, C. H. Mtinera, and T. Tanaka, Physica A 113:367 (1982). 
14. H. Tasaki, J. Phys. A 20:4521 (1987). 
15. Y. Gefen, A. Aharony, Y. Shapir, and B. B. Mandelbrot, J. Phys. A 17:435 (1984). 
16. W. Je2ewski and P. Tomczak, Phys. Lett. A 157:507 (1991). 
17. R. B. Stinchcombe, Phys. Ret,. B 41:2510 (1990). 
18. P. Tomczak and W. Je• Physica A 209:275 (1994). 
19. M. Kardar and M. Kaufman, Phys. Retd. Lett. 51:1210 (1983). 
20. P. Collet and J.-P. Eckmann, Iterated Maps on the lnterval as Dynamical Systems 

(Birkh~user, Boston, 1980). 
21. J.-P. Eckmann and D. Ruelle, Reo. Mod. Phys. 57:617 (1985). 
22. H. Kawai and S.-H. H. Tye, Phys. Ret,. A 30:2005 (1984). 


